Assessment of Machine Learning-Driven Retrievals of Arctic Sea Ice Thickness from L-Band Radiometry Remote Sensing
Hernández-Macià, Ferran 
(Universitat Autònoma de Barcelona. Departament d'Arquitectura de Computadors i Sistemes Operatius)
Sanjuan Gómez, Gemma 
(Universitat Autònoma de Barcelona. Departament d'Arquitectura de Computadors i Sistemes Operatius)
Gabarró, Carolina 
(Institut de Ciències del Mar)
Escorihuela, Maria José 
(isardSAT. S.L.)
| Data: |
2025 |
| Resum: |
This study evaluates machine learning-based methods for retrieving thin Arctic sea ice thickness (SIT) from L-band radiometry, using data from the European Space Agency's (ESA) Soil Moisture and Ocean Salinity (SMOS) satellite. In addition to the operational ESA product, three alternative approaches are assessed: a Random Forest (RF) algorithm, a Convolutional Neural Network (CNN) that incorporates spatial coherence, and a Long Short-Term Memory (LSTM) neural network designed to capture temporal coherence. Validation against in situ data from the Beaufort Gyre Exploration Project (BGEP) moorings and the ESA SMOSice campaign demonstrates that the RF algorithm achieves robust performance comparable to the ESA product, despite its simplicity and lack of explicit spatial or temporal modeling. The CNN exhibits a tendency to overestimate SIT and shows higher dispersion, suggesting limited added value when spatial coherence is already present in the input data. The LSTM approach does not improve retrieval accuracy, likely due to the mismatch between satellite resolution and the temporal variability of sea ice conditions. These results highlight the importance of L-band sea ice emission modeling over increasing algorithm complexity and suggest that simpler, adaptable methods such as RF offer a promising foundation for future SIT retrieval efforts. The findings are relevant for refining current methods used with SMOS and for developing upcoming satellite missions, such as ESA's Copernicus Imaging Microwave Radiometer (CIMR). |
| Ajuts: |
Agencia Estatal de Investigación CEX2024-001494-S Agencia Estatal de Investigación PID2021-125324OB-I00 Agència de Gestió d'Ajuts Universitaris i de Recerca 2023/DI-0007
|
| Drets: |
Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original.  |
| Llengua: |
Anglès |
| Document: |
Article ; recerca ; Versió publicada |
| Matèria: |
Machine learning ;
Remote sensing ;
Sea ice ;
Cryosphere |
| Publicat a: |
Computers, Vol. 14, Issue 8 (August 2025) , art. 305, ISSN 2073-431X |
DOI: 10.3390/computers14080305
El registre apareix a les col·leccions:
Articles >
Articles de recercaArticles >
Articles publicats
Registre creat el 2025-09-15, darrera modificació el 2025-09-22