Entropy, Irreversibility, and Time-Series Deep Learning of Kinematic and Kinetic Data for Gait Classification in Children with Cerebral Palsy, Idiopathic Toe Walking, and Hereditary Spastic Paraplegia
de Gorostegui, Alfonso 
(Universidad Autónoma de Madrid)
Zanin, Massimiliano 
(Instituto de Física Interdisciplinar y Sistemas Complejos (Palma de Mallorca))
Martín-Gonzalo, Juan-Andrés 
(Universidad Autónoma de Madrid)
López-López, Javier 
(Universidad Europea de Madrid (Villaviciosa de Odón, Madrid))
Gómez-Andrés, David 
(Hospital Universitari Vall d'Hebron. Institut de Recerca)
Kiernan, Damien 
(Central Remedial Clinic (Clontarf, Irlanda))
Rausell, Estrella
(Universidad Autónoma de Madrid)
Universitat Autònoma de Barcelona
| Data: |
2025 |
| Resum: |
The use of gait analysis to differentiate among paediatric populations with neurological and developmental conditions such as idiopathic toe walking (ITW), cerebral palsy (CP), and hereditary spastic paraplegia (HSP) remains challenging due to the insufficient precision of current diagnostic approaches, leading in some cases to misdiagnosis. Existing methods often isolate the analysis of gait variables, overlooking the whole complexity of biomechanical patterns and variations in motor control strategies. While previous studies have explored the use of statistical physics principles for the analysis of impaired gait patterns, gaps remain in integrating both kinematic and kinetic information or benchmarking these approaches against Deep Learning models. This study evaluates the robustness of statistical physics metrics in differentiating between normal and abnormal gait patterns and quantifies how the data source affects model performance. The analysis was conducted using gait data sets from two research institutions in Madrid and Dublin, with a total of 81 children with ITW, 300 with CP, 20 with HSP, and 127 typically developing children as controls. From each kinematic and kinetic time series, Shannon's entropy, permutation entropy, weighted permutation entropy, and time irreversibility metrics were derived and used with Random Forest models. The classification accuracy of these features was compared to a ResNet Deep Learning model. Further analyses explored the effects of inter-laboratory comparisons and the spatiotemporal resolution of time series on classification performance and evaluated the impact of age and walking speed with linear mixed models. The results revealed that statistical physics metrics were able to differentiate among impaired gait patterns, achieving classification scores comparable to ResNet. The effects of walking speed and age on gait predictability and temporal organisation were observed as disease-specific patterns. However, performance differences across laboratories limit the generalisation of the trained models. These findings highlight the value of statistical physics metrics in the classification of children with different toe walking conditions and point towards the need of multimetric integration to improve diagnostic accuracy and gain a more comprehensive understanding of gait disorders. |
| Ajuts: |
European Commissione 851255
|
| Drets: |
Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original.  |
| Llengua: |
Anglès |
| Document: |
Article ; recerca ; Versió publicada |
| Matèria: |
Cerebral palsy ;
Idiopathic toe walking ;
Hereditary spastic paraplegia ;
Deep learning ;
Entropy ;
Time irreversibility |
| Publicat a: |
Sensors (Basel, Switzerland), Vol. 25 (july 2025) , ISSN 1424-8220 |
DOI: 10.3390/s25134235
PMID: 40648490
El registre apareix a les col·leccions:
Articles >
Articles de recercaArticles >
Articles publicats
Registre creat el 2025-10-14, darrera modificació el 2025-10-22