|
|
|||||||||||||||
|
Cerca | Lliura | Ajuda | Servei de Biblioteques | Sobre el DDD | Català English Español | |||||||||
| Pàgina inicial > Articles > Articles publicats > Local and global analysis of the displacement map for some near integrable systems |
| Data: | 2025 |
| Resum: | In this paper, we introduce an alternative method for applying averaging theory of orders 1 and 2 in the plane. This is done by combining Taylor expansions of the displacement map with the integral form of the Poincaré-Poyntriagin-Melnikov function. It is known that, to obtain results of order 2 with averaging theory, the first-order averaging function should be identically zero. However, when working with Taylor expansions of the ith-order averaging function, we usually cannot guarantee it is identically zero. We prove that the vanishing of certain coefficients of the Taylor series of the first-order averaging function ensures it is identically zero. We present our reasoning in several concrete examples: a quadratic Lotka-Volterra system, a quadratic Hamiltonian system, the entire family of quadratic isochronous differential systems, and a cubic system. For the latter, we also show that a previous analysis contained in the literature is not correct. In none of the examples is it necessary to precisely calculate the averaging functions. |
| Ajuts: | Generalitat de Catalunya 2021/SGR-00113 Agencia Estatal de Investigación PID2022-136613NB-I00 Agencia Estatal de Investigación CEX2020-001084-M |
| Drets: | Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, i la comunicació pública de l'obra, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original. No es permet la creació d'obres derivades. |
| Llengua: | Anglès |
| Document: | Article ; recerca ; Versió acceptada per publicar |
| Matèria: | Periodic solution ; Displacement map ; Smooth differential system |
| Publicat a: | Physica D: Nonlinear Phenomena, Vol. 483 (December 2025) , art. 134932, ISSN 0167-2789 |
Disponible a partir de: 2027-12-31 Postprint 20 p, 361.3 KB |