Google Scholar: cites
Bivariant long exact sequences II
Fay, T. H.
Hardie, K. A.

Data: 1989
Resum: Given a pair of short exact sequences 1) 0 → X → Y → Z → 0, 0 → A → B → C → 0 in an abelian category A, with sufficiently many projectives and injectives, and given an additive bifunctor T we show that T applied to the pair (1) gives rise to a diagram of a type described by C. T. C. Wall that contains 15 interlocking long exact sequences involving the derived functors of T at (A, X), (A, Y), etc. and also involving the derived functors of Tp and Tq which are two functors with domain A2 that arise through the failure of T to preserve pullbacks and pushouts. In the case of Hom (respectively ø) in the category of G-modules for a group G the derived functors of Tp (respectively Tq) are expressed in terms of group cohomology (respectively homology).
Drets: Tots els drets reservats.
Llengua: Anglès
Document: Article ; recerca ; Versió publicada
Publicat a: Publicacions matemàtiques, V. 33 n. 2 (1989) p. 185-203, ISSN 2014-4350

Adreça alternativa:
DOI: 10.5565/PUBLMAT_33289_02

19 p, 420.6 KB

El registre apareix a les col·leccions:
Articles > Articles publicats > Publicacions matemàtiques
Articles > Articles de recerca

 Registre creat el 2009-04-27, darrera modificació el 2022-02-18

   Favorit i Compartir