![]() |
|||||||||||||||
![]() |
Cerca | Lliura | Ajuda | Servei de Biblioteques | Sobre el DDD | Català English Español |
Pàgina inicial > Articles > Articles publicats > Duo, Bézout and distributive rings of skew power series |
Data: | 2009 |
Resum: | We give necessary and sufficient conditions on a ring R and an endomorphism σ of R for the skew power series ring R[[x; σ]] to be right duo right Bézout. In particular, we prove that R[[x; σ]] is right duo right Bézout if and only if R[[x; σ]] is reduced right distributive if and only if R[[x; σ]] is right duo of weak dimension less than or equal to 1 if and only if R is N0-injective strongly regular and σ is bijective and idempotent-stabilizing, extending to skew power series rings the Brewer-Rutter-Watkins characterization of commutative B'ezout power series rings. |
Drets: | Tots els drets reservats. |
Llengua: | Anglès |
Document: | Article ; recerca ; Versió publicada |
Matèria: | Skew power series ring ; Rright Bézout ring ; Right distributive ring ; Right duo ring |
Publicat a: | Publicacions matemàtiques, V. 53 n. 2 (2009) p. 257-271, ISSN 2014-4350 |
15 p, 153.9 KB |