Interpolation of Sobolev spaces, Littlewood-Paley inequalities and Riesz transforms on graphs
Badr, Nadine (Université Claude Bernard Lyon I)
Russ, Emmanuel (Université Paul Cézanne. Faculté des Sciences et Techniques de Saint-Jérôme)
Data: |
2009 |
Resum: |
Let Γ be a graph endowed with a reversible Markov kernel p, and P the associated operator, defined by Pf(x) = P y p(x, y)f(y). Denote by ∇ the discrete gradient. We give necessary and/or sufficient conditions on Γ in order to compare k∇fkp and‚ ‚(I − P) 1/2f‚ p uniformly in f for 1 < p < +∞. These conditions are different for p < 2 and p > 2. The proofs rely on recent techniques developed to handle operators beyond the class of Calderón-Zygmund operators. For our purpose, we also prove Littlewood-Paley inequalities and interpolation results for Sobolev spaces in this context, which are of independent interest. |
Drets: |
Tots els drets reservats.  |
Llengua: |
Anglès |
Document: |
Article ; recerca ; Versió publicada |
Matèria: |
Graphs ;
Discrete Laplacian ;
Riesz transforms ;
Littlewood-Paley inequalities ;
Sobolev spaces ;
Interpolation |
Publicat a: |
Publicacions matemàtiques, V. 53 n. 2 (2009) p. 273-328, ISSN 2014-4350 |
Adreça alternativa: https://raco.cat/index.php/PublicacionsMatematiques/article/view/140680
DOI: 10.5565/PUBLMAT_53209_02
El registre apareix a les col·leccions:
Articles >
Articles publicats >
Publicacions matemàtiquesArticles >
Articles de recerca
Registre creat el 2009-10-16, darrera modificació el 2022-02-13