Google Scholar: cites
Compact hyperbolic tetrahedra with non-obtuse dihedral angles
Roeder, Roland K. W.

Data: 2006
Resum: Given a combinatorial description C of a polyhedron having E edges, the space of dihedral angles of all compact hyperbolic polyhedra that realize C is generally not a convex subset of RE [9]. If C has five or more faces, Andreev's Theorem states that the corresponding space of dihedral angles AC obtained by restricting to non-obtuse angles is a convex polytope. In this paper we explain why Andreev did not consider tetrahedra, the only polyhedra having fewer than five faces, by demonstrating that the space of dihedral angles of compact hyperbolic tetrahedra, after restricting to non-obtuse angles, is non-convex. Our proof provides a simple example of the "method of continuity", the technique used in classification theorems on polyhedra by Alexandrow [4], Andreev [5], and Rivin-Hodgson [18].
Drets: Tots els drets reservats.
Llengua: Anglès
Document: Article ; recerca ; Versió publicada
Publicat a: Publicacions matemàtiques, V. 50 n. 1 (2006) p. 211-227, ISSN 2014-4350

Adreça alternativa:
DOI: 10.5565/PUBLMAT_50106_12

17 p, 232.8 KB

El registre apareix a les col·leccions:
Articles > Articles publicats > Publicacions matemàtiques
Articles > Articles de recerca

 Registre creat el 2006-05-09, darrera modificació el 2022-02-20

   Favorit i Compartir