Solving nonlinear multicommodity flow problems by the analytic center cutting plane method
Goffin, J.-L.
Gondzio, Jacek
Sarkissian, R.
Vial, J.-P.

Data: 1997
Resum: The paper deals with nonlinear multicommodity flow problems with convex costs. A decomposition method is proposed to solve them. The approach applies a potential reduction algorithm to solve the master problem approximately and a column generation technique to define a sequence of primal linear programming problems. Each subproblem consists of finding a minimum cost flow between an origin and a destination node in an uncapacited network. It is thus formulated as a shortest path problem and solved with Dijkstra's d-heap algorithm. An implementation is described that takes full advantage of the supersparsity of the network in the linear algebra operations. Computational results show the efficiency of this approach on well-known nondifferentiable problems and also large scale randomly generated problems (up to 1000 arcs and 5000 commodities).
Drets: Tots els drets reservats.
Llengua: Anglès
Document: Article ; recerca ; Versió publicada
Matèria: Àlgebra
Publicat a: Mathematical Programming, vol. 76 n. 1 (1997) p. 131-154, ISSN 0025-5610

24 p, 1.2 MB
 Accés restringit a la UAB

El registre apareix a les col·leccions:
Articles > Articles de recerca
Articles > Articles publicats

 Registre creat el 2006-03-13, darrera modificació el 2024-05-02

   Favorit i Compartir