Data: |
1993 |
Resum: |
In many situations, minimal models are used as representatives of homotopy types. In this paper we state this fact as an equivalence of categories . This equivalence follows from an axiomatic definition of minimal objects. We see that this definition includes examples such as minimal resolutions of Eilenberg-Nakayama-Tate, minimal fiber spaces of Kan and A-minimal A-extensions of Halperin . For the first one, this is done by generalizing the construction of minimal resolutions of modules to complexes. The others follow by a caracterization of minimal objects in bifibred categories. |
Drets: |
Tots els drets reservats.  |
Llengua: |
Anglès |
Document: |
Article ; recerca ; Versió publicada |
Publicat a: |
Publicacions matemàtiques, Vol. 37, Núm. 2 (1993) , p. 285-303, ISSN 2014-4350 |