|
|
|||||||||||||||
|
Cerca | Lliura | Ajuda | Servei de Biblioteques | Sobre el DDD | Català English Español | |||||||||
| Pàgina inicial > Articles > Articles publicats > A Tutorial on image compression for optical space imaging systems |
| Data: | 2014 |
| Resum: | Abstract-Public policies and private initiatives share the will to explore outer space and to monitor the Earth from space sensors. Recent years have seen an increased number of space missions, while the sensors on board aircrafts or spacecrafts have also significantly improved their acquisition capabilities. Given this huge volume of remote sensing data and the detailed characteristics of the acquired images, a data compression process is in order to allow as large a transmission rate as possible. In this paper we provide an overview of several standards for remote sensing data compression, notably of those recently approved by the Consultative Committee for Space Data Systems, although the use of other ISO/IEC image coding standards is also dealt with. Discussion embraces both mono band and multi band compression, and lossless, lossy and near-lossless compression. Illustrative results are reported for a set of AVIRIS and Hyperion images, indicating that exploiting the spectral correlation -either in prediction-based or in transform-based schemes- is paramount to achieve improved coding performance. |
| Ajuts: | Ministerio de Economía y Competitividad TIN2012-38102-C03-03 European Commission 107104 Agència de Gestió d'Ajuts Universitaris i de Recerca 2014/SGR-691 |
| Drets: | Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets. |
| Llengua: | Anglès |
| Document: | Article ; recerca ; Versió acceptada per publicar |
| Matèria: | Image compression ; Multispectral and hyperspectral images ; CCSDS ; Prediction ; Transform coding ; DPCM ; Rate control |
| Publicat a: | IEEE geoscience and remote sensign magazine, Vol. 2, Issue 3 (Sept. 2014) , p. 8-26, ISSN 2168-6831 |
Post-print 16 p, 1.1 MB |