|
|
|||||||||||||||
|
Buscar | Enviar | Ayuda | Servicio de Bibliotecas | Sobre el DDD | Català English Español | |||||||||
| Página principal > Artículos > Artículos publicados > Non-landing hairs in Sierpinski curve Julia sets of transcendental entire maps |
| Fecha: | 2011 |
| Resumen: | We consider the family of transcendental entire maps given by fa (z) = a(z - (1 - a)) exp(z + a) where a is a complex parameter. Every map has a superattracting fixed point at z = -a and an asymptotic value at z = 0. For a > 1 the Julia set of fa is known to be homeomorphic to the Sierpi' nski universal curve [19], thus containing embedded copies of any one-dimensional plane continuum. In this paper we study subcontinua of the Julia set that can be defined in a combinatorial manner. In particular, we show the existence of non-landing hairs with prescribed combinatorics embedded in the Julia set for all parameters a ≥ 3. We also study the relation between non-landing hairs and the immediate basin of attraction of z = -a. Even as each non-landing hair accumulates onto the boundary of the immediate basin at a single point, its closure, nonetheless, becomes an indecomposable subcontinuum of the Julia set. |
| Ayudas: | Agència de Gestió d'Ajuts Universitaris i de Recerca 2009/SGR-792 Ministerio de Economía y Competitividad MTM200801486 Ministerio de Economía y Competitividad MTM2006-05849 |
| Nota: | Agraïments: The first and second author are both partially supported by the European network 035651-2-CODY. The third author is supported by CONACyT grant 59183, CB-2006-01. |
| Derechos: | Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets. |
| Lengua: | Anglès |
| Documento: | Article ; recerca ; Versió acceptada per publicar |
| Materia: | Transcendental entire maps ; Julia set ; Non-landing hairs ; Indecomposable continua |
| Publicado en: | Fundamenta Mathematicae, Vol. 214 (2011) , p. 135-160, ISSN 1730-6329 |
Postprint 32 p, 489.6 KB |