| Home > Articles > Published articles > Non-landing hairs in Sierpinski curve Julia sets of transcendental entire maps |
| Date: | 2011 |
| Abstract: | We consider the family of transcendental entire maps given by fa (z) = a(z - (1 - a)) exp(z + a) where a is a complex parameter. Every map has a superattracting fixed point at z = -a and an asymptotic value at z = 0. For a > 1 the Julia set of fa is known to be homeomorphic to the Sierpi' nski universal curve [19], thus containing embedded copies of any one-dimensional plane continuum. In this paper we study subcontinua of the Julia set that can be defined in a combinatorial manner. In particular, we show the existence of non-landing hairs with prescribed combinatorics embedded in the Julia set for all parameters a ≥ 3. We also study the relation between non-landing hairs and the immediate basin of attraction of z = -a. Even as each non-landing hair accumulates onto the boundary of the immediate basin at a single point, its closure, nonetheless, becomes an indecomposable subcontinuum of the Julia set. |
| Grants: | Agència de Gestió d'Ajuts Universitaris i de Recerca 2009/SGR-792 Ministerio de Economía y Competitividad MTM200801486 Ministerio de Economía y Competitividad MTM2006-05849 |
| Note: | Agraïments: The first and second author are both partially supported by the European network 035651-2-CODY. The third author is supported by CONACyT grant 59183, CB-2006-01. |
| Rights: | Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets. |
| Language: | Anglès |
| Document: | Article ; recerca ; Versió acceptada per publicar |
| Subject: | Transcendental entire maps ; Julia set ; Non-landing hairs ; Indecomposable continua |
| Published in: | Fundamenta Mathematicae, Vol. 214 (2011) , p. 135-160, ISSN 1730-6329 |
Postprint 32 p, 489.6 KB |