| Home > Articles > Published articles > Polynomial integrability of the Hamiltonian systems with homogeneous potential of degree -3 |
| Date: | 2011 |
| Abstract: | In this paper we study the polynomial integrability of natural Hamiltonian systems with two degrees of freedom having a homogeneous potential of degree k given either by a polynomial, or by an inverse of a polynomial. For k = -2, -1, . . . , 3, 4 their polynomial integrability has been characterized. Here we have two main results. First we characterize the polynomail integrability of those Hamiltonian systems with homogeneous potential of degree -3. Second we extend a relation between the nontrivial eigenvalues of the Hessian of the potential calculated at a Darboux point to a family of Hamiltonian systems with potentials given by an inverse of a homogeneous polynomial. This relation was known for such Hamiltonian system with homogeneous polynomial potentials. Finally we present three open problems related with the polynomial integrability of Hamiltonian systems with a rational potential. |
| Grants: | Ministerio de Economía y Competitividad MTM2008-03437 Agència de Gestió d'Ajuts Universitaris i de Recerca 2009/SGR-410 |
| Note: | Agraïments: The third author is partially supported by FCT through CAMGDS, Lisbon. |
| Rights: | Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets. |
| Language: | Anglès |
| Document: | Article ; recerca ; Versió acceptada per publicar |
| Subject: | Hamiltonian system with 2-degrees of freedom ; Homogeneous potential of degree -3 ; Polynomial integrability |
| Published in: | Physica D. Nonlinear phenomena, Vol. 240 (2011) , p. 1928-1935, ISSN 1872-8022 |
Postprint 15 p, 852.9 KB |