|
|
|||||||||||||||
|
Cerca | Lliura | Ajuda | Servei de Biblioteques | Sobre el DDD | Català English Español | |||||||||
| Pàgina inicial > Articles > Articles publicats > Periodic orbits from second order perturbation via rational trigonometric integrals |
| Data: | 2014 |
| Resum: | The second order Poincaré-Pontryagin-Melnikov perturbation theory is used in this paper to study the number of bifurcated periodic orbits from certain centers. This approach also allows us to give the shape and the period up to first order. We address these problems for some classes of Abel differential equations and quadratic isochronous vector fields in the plane. We prove that two is the maximum number of hyperbolic periodic orbits bifurcating from the isochronous quadratic centers with a birational linearization under quadratic perturbations of second order. In particular the configurations (2, 0) and (1, 1) are realizable when two centers are perturbed simultaneously. The required computations show that all the considered families share the same iterated rational trigonometric integrals. |
| Ajuts: | Ministerio de Economía y Competitividad MTM2011-22751 Ministerio de Ciencia e Innovación MTM2008-03437 Ministerio de Economía y Competitividad UNAB10-4E-378 Agència de Gestió d'Ajuts Universitaris i de Recerca 2009/SGR-410 |
| Drets: | Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets. |
| Document: | Article |
| Matèria: | Polynomial differential equation ; Abel equation ; Bifurcation of periodic orbits ; Number, shape and period of periodic solutions ; First and second order perturbation ; Isochronous quadratic centers ; Simultaneous bifurcation |
| Publicat a: | Physica D. Nonlinear phenomena, Vol. 280-281 (2014), p. 59-72, ISSN 1872-8022 |
Postprint 29 p, 488.3 KB |