Scopus: 3 cites, Web of Science: 2 cites,
Optimal Sobolev embeddings on Rn
Vybíral, J.

Data: 2007
Resum: We study Sobolev-type embeddings involving rearrangement-invariant norms. In particular, we focus on the question when such embeddings are optimal. We concentrate on the case when the functions involved are defined on Rn. This subject has been studied before, but only on bounded domains. We first establish the equivalence of the Sobolev embedding to a new type of inequality involving two integral operators. Next, we show this inequality to be equivalent to the boundedness of a certain Hardy operator on a specific new type of cone of positive functions. This Hardy operator is then used to provide optimal domain and range rearrangement-invariant norm in the embedding inequality. Finally, the limiting case of the Sobolev embedding on Rn is studied in detail.
Drets: Tots els drets reservats.
Llengua: Anglès.
Document: Article ; recerca ; article ; publishedVersion
Publicat a: Publicacions Matemàtiques, V. 51 n. 1 (2007) p. 17-44, ISSN 0214-1493

Adreça original:
Adreça alternativa:
DOI: 10.5565/PUBLMAT_51107_02

28 p, 226.6 KB

El registre apareix a les col·leccions:
Articles > Articles publicats > Publicacions matemàtiques
Articles > Articles de recerca

 Registre creat el 2007-03-29, darrera modificació el 2018-07-26

   Favorit i Compartir