Home > Articles > Published articles > Piecewise smooth dynamical systems: Persistence of periodic solutions and normal forms |
Date: | 2016 |
Abstract: | We consider an n-dimensional piecewise smooth vector field with two zones separated by a hyperplane \Sigma which admits an invariant hyperplane \Omega transversal to \Sigma containing a period annulus A fulfilled by crossing periodic solutions. For small discontinuous perturbations of these systems we develop a Melnikov-like function to control the persistence of periodic solutions contained in A. When n = 3 we provide normal forms for the piecewise linear case. Finally we apply the Melnikov-like function to study discontinuous perturbations of the given normal forms. |
Note: | Agraïments: The first and fourth author are partially supported by a FAPESP grant 2013/34541-0. The first and fourth authors are supported by a CAPES PROCAD grant 88881.068462/2014-01. The second author is partially supported by a CAPES CSF-PVE grant 88881.030454/ 2013-01. The third author is supported by a FAPESP grant 2015/02517-6. |
Note: | Número d'acord de subvenció MINECO/MTM2013-40998-P |
Note: | Número d'acord de subvenció AGAUR/2014/SGR-568 |
Note: | Número d'acord de subvenció EC/FP7/2012/316338 |
Note: | Número d'acord de subvenció EC/FP7/2012/316339 |
Rights: | Tots els drets reservats. |
Language: | Anglès |
Document: | article ; recerca ; acceptedVersion |
Subject: | Crossing periodic orbits ; Limit cycle ; Lyapunov-Schmidt reduction ; Piecewise differential system |
Published in: | Journal of differential equations, Vol. 260 (2016) , p. 6108-6129, ISSN 1090-2732 |
Postprint 23 p, 542.3 KB |