Web of Science: 23 cites, Scopus: 23 cites, Google Scholar: cites,
Field effect enhancement in buffered quantum nanowire networks
Krizek, Filip (Center for Quantum Devices and Station Q Copenhagen)
Sestoft, Joachim E. (Center for Quantum Devices and Station Q Copenhagen)
Aseev, Pavel (Delft University of Technology)
Martí-Sánchez, Sara (Institut Català de Nanociència i Nanotecnologia)
Vaitiekenas, Saulius (Center for Quantum Devices and Station Q Copenhagen)
Casparis, Lucas (Center for Quantum Devices and Station Q Copenhagen)
Khan, Sabbir A. (Center for Quantum Devices and Station Q Copenhagen)
Liu, Yu (Center for Quantum Devices and Station Q Copenhagen)
Stankevič, Tomas (Center for Quantum Devices and Station Q Copenhagen)
Whiticar, A.M. (Center for Quantum Devices and Station Q Copenhagen)
Fursina, Alexandra (Delft University of Technology)
Boekhout, Frenk (QuTech and Netherlands Organization for Applied Scientific Research)
Koops, René (QuTech and Netherlands Organization for Applied Scientific Research)
Uccelli, Emanuele (QuTech and Netherlands Organization for Applied Scientific Research)
Kouwenhoven, Leo P. (Delft University of Technology)
Marcus, Charles M. (Center for Quantum Devices and Station Q Copenhagen)
Arbiol i Cobos, Jordi (Institut Català de Nanociència i Nanotecnologia)
Krogstrup, Peter (Center for Quantum Devices and Station Q Copenhagen)

Data: 2018
Resum: III-V semiconductor nanowires have shown great potential in various quantum transport experiments. However, realizing a scalable high-quality nanowire-based platform that could lead to quantum information applications has been challenging. Here, we study the potential of selective area growth by molecular beam epitaxy of InAs nanowire networks grown on GaAs-based buffer layers, where Sb is used as a surfactant. The buffered geometry allows for substantial elastic strain relaxation and a strong enhancement of field effect mobility. We show that the networks possess strong spin-orbit interaction and long phase-coherence lengths with a temperature dependence indicating ballistic transport. With these findings, and the compatibility of the growth method with hybrid epitaxy, we conclude that the material platform fulfills the requirements for a wide range of quantum experiments and applications.
Nota: Número d'acord de subvenció EC/H2020/722176
Nota: Número d'acord de subvenció EC/H2020/716655
Nota: Número d'acord de subvenció AGAUR/2017/SGR-327
Nota: Número d'acord de subvenció MINECO/SEV-2013-0295
Drets: Tots els drets reservats.
Llengua: Anglès.
Document: article ; recerca ; submittedVersion
Matèria: Elastic strain relaxation ; Field-effect mobilities ; Phase-coherence length ; Quantum information applications ; Selective area growth ; Semiconductor nanowire ; Spin orbit interactions ; Temperature dependence
Publicat a: Physical review materials, Vol. 2, Issue 9 (September 2018) , art. 93401, ISSN 2475-9953

DOI: 10.1103/PhysRevMaterials.2.093401


Preprint
11 p, 2.8 MB

El registre apareix a les col·leccions:
Documents de recerca > Documents dels grups de recerca de la UAB > Centres i grups de recerca (producció científica) > Ciències > Institut Català de Nanociència i Nanotecnologia (ICN2)
Articles > Articles de recerca
Articles > Articles publicats

 Registre creat el 2019-12-20, darrera modificació el 2020-02-28



   Favorit i Compartir