Google Scholar: cites
Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass
Terrer, César (Institut de Ciència i Tecnologia Ambientals)
Jackson, Robert B. (Stanford University. Department of Earth System Science)
Prentice, I. Colin (Imperial College London. Department of Life Sciences)
Keenan, Trevor F. (UC Berkeley. Department of Environmental Science, Policy and Management)
Kaiser, Christina (University of Vienna. Department of Microbiology and Ecosystem Science)
Vicca, Sara (University of Antwerp. Biology Department. Centre of Excellence PLECO (Plants and Ecosystems))
Fisher, Joshua B. (University of California at Los Angeles. Joint Institute for Regional Earth System Science and Engineering)
Reich, Peter B. (University of Minnesota. Department of Forest Resources)
Stocker, Benjamin D. (Centre de Recerca Ecològica i Aplicacions Forestals)
Hungate, Bruce A. (Northern Arizona University. Department of Biological Sciences)
Peñuelas, Josep (Centre de Recerca Ecològica i Aplicacions Forestals)
McCallum, Ian (International Institute for Applied Systems Analysis (Austria))
Soudzilovskaia, Nadejda A. (Leiden University. Environmental Biology Department)
Cernusak, Lucas A. (James Cook University. College of Marine and Environmental Sciences (Australia))
Talhelm, Alan F. (University of Idaho. Department of Forest, Rangeland and Fire Sciences)
Van Sundert, Kevin (University of Antwerp. Biology Department. Centre of Excellence PLECO (Plants and Ecosystems))
Piao, Shilong (Chinese Academy of Sciences. Institute of Tibetan Plateau Research)

Data: 2019
Resum: Elevated CO2 (eCO2) experiments provide critical information to quantify the effects of rising CO2 on vegetation. Many eCO2 experiments suggest that nutrient limitations modulate the local magnitude of the eCO2 effect on plant biomass but the global extent of these limitations has not been empirically quantified, complicating projections of the capacity of plants to take up CO2. Here, we present a data-driven global quantification of the eCO2 effect on biomass based on 138 eCO2 experiments. The strength of CO2 fertilization is primarily driven by nitrogen (N) in ~65% of global vegetation and by phosphorus (P) in ~25% of global vegetation, with N- or P-limitation modulated by mycorrhizal association. Our approach suggests that CO2 levels expected by 2100 can potentially enhance plant biomass by 12 ± 3% above current values, equivalent to 59 ± 13 PgC. The global-scale response to eCO2 we derive from experiments is similar to past changes in greenness and biomass10 with rising CO2, suggesting that CO2 will continue to stimulate plant biomass in the future despite the constraining effect of soil nutrients. Our research reconciles conflicting evidence on CO2 fertilization across scales and provides an empirical estimate of the biomass sensitivity to eCO2 that may help to constrain climate projections.
Nota: Número d'acord de subvenció MICINN/MDM-2015-0552
Nota: Número d'acord de subvenció EC/H2020/787203
Nota: Número d'acord de subvenció EC/FP7/610028
Nota: Unidad de excelencia María de Maeztu MdM-2015-0552
Drets: Tots els drets reservats
Llengua: Anglès.
Document: article ; recerca ; acceptedVersion
Publicat a: Nature Climate Change, Vol. 9, Issue 9 (September 2019) , p. 684-689, ISSN 1758-678X

DOI: 10.1038/s41558-019-0545-2


Postprint
20 p, 593.1 KB

El registre apareix a les col·leccions:
Documents de recerca > Documents dels grups de recerca de la UAB > Centres i grups de recerca (producció científica) > Ciències > CREAF (Centre de Recerca Ecològica i d'Aplicacions Forestals) > Imbalance-P
Documents de recerca > Documents dels grups de recerca de la UAB > Centres i grups de recerca (producció científica) > Ciències > Institut de Ciència i Tecnologia Ambientals (ICTA)
Articles > Articles de recerca
Articles > Articles publicats

 Registre creat el 2020-02-21, darrera modificació el 2020-03-28



   Favorit i Compartir