Web of Science: 49 cites, Scopus: 49 cites, Google Scholar: cites,
Discovering putative prion sequences in complete proteomes using probabilistic representations of Q/N-rich domains
Espinosa Angarica, Vladimir (Universidad de Zaragoza. Departamento de Bioquímica y Biología Molecular y Celular)
Ventura, Salvador (Universitat Autònoma de Barcelona. Institut de Biotecnologia i de Biomedicina "Vicent Villar Palasí")
Sancho, Javier (Universidad de Zaragoza. Departamento de Bioquímica y Biología Molecular y Celular)
Universitat Autònoma de Barcelona. Departament de Bioquímica i de Biologia Molecular

Data: 2013
Resum: Background: prion proteins conform a special class among amyloids due to their ability to transmit aggregative folds. Prions are known to act as infectious agents in neurodegenerative diseases in animals, or as key elements in transcription and translation processes in yeast. It has been suggested that prions contain specific sequential domains with distinctive amino acid composition and physicochemical properties that allow them to control the switch between soluble and β-sheet aggregated states. Those prion-forming domains are low complexity segments enriched in glutamine/asparagine and depleted in charged residues and prolines. Different predictive methods have been developed to discover novel prions by either assessing the compositional bias of these stretches or estimating the propensity of protein sequences to form amyloid aggregates. However, the available algorithms hitherto lack a thorough statistical calibration against large sequence databases, which makes them unable to accurately predict prions without retrieving a large number of false positives. - Results: here we present a computational strategy to predict putative prion-forming proteins in complete proteomes using probabilistic representations of prionogenic glutamine/asparagine rich regions. After benchmarking our predictive model against large sets of non-prionic sequences, we were able to filter out known prions with high precision and accuracy, generating prediction sets with few false positives. The algorithm was used to scan all the proteomes annotated in public databases for the presence of putative prion proteins. We analyzed the presence of putative prion proteins in all taxa, from viruses and archaea to plants and higher eukaryotes, and found that most organisms encode evolutionarily unrelated proteins with susceptibility to behave as prions. - Conclusions: to our knowledge, this is the first wide-ranging study aiming to predict prion domains in complete proteomes. Approaches of this kind could be of great importance to identify potential targets for further experimental testing and to try to reach a deeper understanding of prions' functional and regulatory mechanisms.
Ajuts: Ministerio de Ciencia e Innovación BFU2010-16297
Ministerio de Ciencia e Innovación BFU2010-14901
Agència de Gestió d'Ajuts Universitaris i de Recerca 2009/SGR-760
Agència de Gestió d'Ajuts Universitaris i de Recerca 2009/CTP-00004
Drets: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original. Creative Commons
Llengua: Anglès
Document: Article ; recerca ; Versió publicada
Matèria: Prion domain ; Protein aggregation ; Amyloid fibrils ; Prion prediction
Publicat a: BMC genomics, Vol. 14 (2013) , art. 316, ISSN 1471-2164

DOI: 10.1186/1471-2164-14-316
PMID: 23663289


17 p, 651.1 KB

El registre apareix a les col·leccions:
Documents de recerca > Documents dels grups de recerca de la UAB > Centres i grups de recerca (producció científica) > Ciències de la salut i biociències > Institut de Biotecnologia i de Biomedicina (IBB)
Articles > Articles de recerca
Articles > Articles publicats

 Registre creat el 2020-06-22, darrera modificació el 2022-03-26



   Favorit i Compartir