|
|
|||||||||||||||
|
Buscar | Enviar | Ayuda | Servicio de Bibliotecas | Sobre el DDD | Català English Español | |||||||||
| Página principal > Artículos > Artículos publicados > N-dimensional zero-hopf bifurcation of polynomial differential systems via averaging theory of second order |
| Fecha: | 2020 |
| Resumen: | Using the averaging theory of second order, we study the limit cycles which bifurcate from a zero-Hopf equilibrium point of polynomial vector fields with cubic nonlinearities in Rn. We prove that there are at least 3n-2 limit cycles bifurcating from such zero-Hopf equilibrium points. Moreover, we provide an example in dimension 6 showing that this number of limit cycles is reached. |
| Derechos: | Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets. |
| Lengua: | Anglès |
| Documento: | Article ; recerca ; Versió acceptada per publicar |
| Materia: | Hopf bifurcation ; Averaging theory ; Cubic polynomial differential systems |
| Publicado en: | Journal of Dynamical and Control Systems, vol. 27 (June 2020) p. 283-291, ISSN 1573-8698 |
Postprint 8 p, 690.4 KB |