![]() |
|||||||||||||||
![]() |
Cerca | Lliura | Ajuda | Servei de Biblioteques | Sobre el DDD | Català English Español |
Pàgina inicial > Articles > Articles publicats > N-dimensional zero-hopf bifurcation of polynomial differential systems via averaging theory of second order |
Data: | 2020 |
Resum: | Using the averaging theory of second order, we study the limit cycles which bifurcate from a zero-Hopf equilibrium point of polynomial vector fields with cubic nonlinearities in ℝn. We prove that there are at least 3n-2 limit cycles bifurcating from such zero-Hopf equilibrium points. Moreover, we provide an example in dimension 6 showing that this number of limit cycles is reached. |
Drets: | Tots els drets reservats. |
Llengua: | Anglès |
Document: | article ; recerca ; acceptedVersion |
Matèria: | Hopf bifurcation ; Averaging theory ; Cubic polynomial differential systems |
Publicat a: | Journal of Dynamical and Control Systems, (June 2020) , ISSN 1573-8698 |
Disponible a partir de: 2021-06-30 Postprint |