Google Scholar: cites
Semiconductor-ferromagnetic insulator-superconductor nanowires : stray field and exchange field
Liu, Yu (University of Copenhagen. Center for Quantum Devices)
Vaitiekenas, Saulius (University of Copenhagen. Niels Bohr Institute)
Martí-Sánchez, Sara (Institut Català de Nanociència i Nanotecnologia)
Koch, Christian (Institut Català de Nanociència i Nanotecnologia)
Hart, Sean (Stanford University. Department of Physics)
Cui, Zheng (Stanford University. Department of Applied Physics)
Kanne, Thomas (University of Copenhagen. Niels Bohr Institute)
Khan, Sabbir A. (University of Copenhagen. Niels Bohr Institute)
Tanta, Rawa (University of Copenhagen. Niels Bohr Institute)
Upadhyay, Shivendra (University of Copenhagen. Niels Bohr Institute)
Cachaza, Martin Espiñeira (University of Copenhagen. Niels Bohr Institute)
Marcus, Charles M. (University of Copenhagen. Niels Bohr Institute)
Arbiol i Cobos, Jordi (Institut Català de Nanociència i Nanotecnologia)
Moler, Kathryn A. (Stanford University. Department of Applied Physics)
Krogstrup, Peter (University of Copenhagen. Niels Bohr Institute)

Data: 2020
Resum: Nanowires can serve as flexible substrates for hybrid epitaxial growth on selected facets, allowing for the design of heterostructures with complex material combinations and geometries. In this work we report on hybrid epitaxy of freestanding vapor-liquid-solid grown and in-plane selective area grown semiconductor-ferromagnetic insulator-superconductor (InAs/EuS/Al) nanowire heterostructures. We study the crystal growth and complex epitaxial matching of wurtzite and zinc-blende InAs/rock-salt EuS interfaces as well as rock-salt EuS/face-centered cubic Al interfaces. Because of the magnetic anisotropy originating from the nanowire shape, the magnetic structure of the EuS phase is easily tuned into single magnetic domains. This effect efficiently ejects the stray field lines along the nanowires. With tunnel spectroscopy measurements of the density of states, we show that the material has a hard induced superconducting gap, and magnetic hysteretic evolution which indicates that the magnetic exchange fields are not negligible. These hybrid nanowires fulfill key material requirements for serving as a platform for spin-based quantum applications, such as scalable topological quantum computing.
Ajuts: European Commission 716655
European Commission 722176
Ministerio de Economía y Competitividad SEV-2017-0706
Agència de Gestió d'Ajuts Universitaris i de Recerca 2017/SGR-327
Nota: Altres ajuts: ICN2 is funded by the CERCA Programme/Generalitat de Catalunya. Part of the present work has been performed in the framework of Universitat Autònoma de Barcelona Materials Science PhD program. Part of the HAADF-STEM microscopy was conducted in the Laboratorio de Microscopias Avanzadas at Instituto de Nanociencia de Aragon-Universidad de Zaragoza. ICN2 acknowledge support from CSIC Research Platform on Quantum Technologies PTI-001.
Drets: Tots els drets reservats.
Llengua: Anglès
Document: Article ; recerca ; Versió sotmesa a revisió
Matèria: Nanowire growth ; Hybrid nanowires ; Ferromagnetic exchange ; Superconducting proximity ; Hybrid epitaxy
Publicat a: Nano letters, Vol. 20, issue 1 (Jan. 2020) , p. 456-462, ISSN 1530-6992

DOI: 10.1021/acs.nanolett.9b04187


Preprint
30 p, 3.1 MB

El registre apareix a les col·leccions:
Documents de recerca > Documents dels grups de recerca de la UAB > Centres i grups de recerca (producció científica) > Ciències > Institut Català de Nanociència i Nanotecnologia (ICN2)
Articles > Articles de recerca
Articles > Articles publicats

 Registre creat el 2021-01-25, darrera modificació el 2022-09-10



   Favorit i Compartir