Cyclic coverings of rational normal surfaces which are quotients of a product of curves
Artal Bartolo, Enrique (Universidad de Zaragoza. Departamento de Matemáticas)
Cogolludo Agustín, José Ignacio (Universidad de Zaragoza. Departamento de Matemáticas)
Martín Morales, Jorge (Universidad de Zaragoza. Departamento de Matemáticas)

Data: 2024
Resum: This paper deals with cyclic covers of a large family of rational normal surfaces that can also be described as quotients of a product, where the factors are cyclic covers of algebraic curves. We use a generalization of the Esnault-Viehweg method to show that the action of the monodromy on the first Betti group of the covering (and its Hodge structure) splits as a direct sum of the same data for some specific cyclic covers over P 1. This has applications to the study of Lˆe-Yomdin surface singularities, in particular to the action of the monodromy on the mixed Hodge structure, as well as to isotrivial fibered surfaces.
Drets: Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.
Llengua: Anglès
Document: Article ; recerca ; Versió publicada
Matèria: Normal surfaces ; Cyclic coverings ; Alexander polynomial ; Monodromy ; Isotrivial fibered surfaces ; Lê-yomdin singularities
Publicat a: Publicacions matemàtiques, Vol. 68 Núm. 2 (2024) , p. 359-406 (Articles) , ISSN 2014-4350

Adreça original: https://raco.cat/index.php/PublicacionsMatematiques/article/view/430114


48 p, 689.3 KB

El registre apareix a les col·leccions:
Articles > Articles publicats > Publicacions matemàtiques
Articles > Articles de recerca

 Registre creat el 2024-07-05, darrera modificació el 2025-03-23



   Favorit i Compartir