| Home > Articles > Published articles > Planar Quadratic Differential Systems with Invariants of the Form ax2 + bxy + cy2 + dx + ey + c1t |
| Date: | 2024 |
| Abstract: | A function I (x, y, t) constant on the solutions of a differential system in R2 is called an invariant. We classify all planar quadratic differential systems having invariants of the form I (x, y, t) = ax2 + bxy + cy2 + dx + ey + c1t with c ≠ 0. There are 13 different families of quadratic systems having invariants of this form. As far as we know this is the first time that quadratic differential systems having an invariant different from a Darboux invariant have been classified. |
| Grants: | Agencia Estatal de Investigación PID2019-104658GB-I00 European Commission 777911 Agència de Gestió d'Ajuts Universitaris i de Recerca 2017/SGR-1617 |
| Rights: | Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets. |
| Language: | Anglès |
| Document: | Article ; recerca ; Versió acceptada per publicar |
| Subject: | Planar quadratic differential system ; Invariant ; Hamiltonian first integral ; Poincaré compactification ; Singular point ; Chordal quadratic system |
| Published in: | Bulletin of the Iranian Mathematical Society, Vol. 50, Issue 4 (August 2024) , art. 49, ISSN 1735-8515 |
Postprint 12 p, 339.6 KB |