Web of Science: 0 cites, Scopus: 0 cites, Google Scholar: cites
Emerging Technologies for Detecting Food Fraud: A Review of the Current Landscape in the 2020s
Marín, Xavier (Universitat Autònoma de Barcelona. Departament de Ciència Animal i dels Aliments)
Grau Noguer, Eduard (Universitat Autònoma de Barcelona. Departament de Ciència Animal i dels Aliments)
Gervilla-Cantero, Guillem (Universitat Autònoma de Barcelona. Departament de Ciència Animal i dels Aliments)
Ripolles-Avila, Carolina (Universitat Autònoma de Barcelona. Departament de Ciència Animal i dels Aliments)
Castillo Zambudio, Manuel (Universitat Autònoma de Barcelona. Departament de Ciència Animal i dels Aliments)

Data: 2025
Resum: Background: Food fraud refers to the intentional adulteration or misrepresentation of food products for financial gain. It has become a rising global challenge in the 2020s, with significant implications for public health, consumer confidence, and economies. Complex international supply chains, economic pressures, and vulnerabilities exposed by the COVID-19 pandemic have amplified opportunities for fraudulent practices. Scope and approach: This review examines the state-of-the-art of Emerging Technologies and Digitalization in Foods tackling food fraud. We outline advanced analytical methods, including spectroscopic, imaging, chromatographic, spectrometry techniques, molecular DNA assays, and novel sensor platforms, used to authenticate food and identify adulterants more rapidly and with improved sensitivity. Complementing these instrumental advances are data-driven approaches such as machine learning (ML), other artificial intelligence (AI) tools, and blockchain systems, which enhance pattern recognition, and traceability across the food supply chain. Key findings and conclusions: Integrating AI-based predictive analytics with traditional and emerging lab methods significantly improves fraud detection, while blockchain and Internet of Things (IoT) innovations enable secure, real-time tracking of food authenticity. This review discusses how mentioned technologies collectively strengthen the ability to uncover fraud, and emphasizes the need for interdisciplinary collaboration, harmonization, and updated regulatory frameworks to support their adoption. It also integrates fraud incidence data (2020-2024), classification by food matrices and global regions, and an exhaustive review of emerging methods and data-processing and pattern-recognition tools. In conclusion, emerging analytical, and digital tools are poised to dramatically reduce food fraud, but sustained investment, and global cooperation are required to fully safeguard food integrity in the future.
Nota: Altres ajuts: acords transformatius de la UAB
Drets: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original. Creative Commons
Llengua: Anglès
Document: Article ; recerca ; Versió publicada
Matèria: Food adulteration ; Artificial intelligence ; Instrumental analysis ; Machine learning ; Authentication ; Fraud detection
Publicat a: Trends in Food Science & Technology, 2025 , ISSN 1879-3053

DOI: 10.1016/j.tifs.2025.105313


18 p, 5.2 MB

El registre apareix a les col·leccions:
Articles > Articles de recerca
Articles > Articles publicats

 Registre creat el 2025-09-30, darrera modificació el 2025-10-10



   Favorit i Compartir