| Home > Articles > Published articles > Bifurcation of limit cycle from a n-dimensional linear center inside a class of piecewise linear differential systems |
| Date: | 2012 |
| Abstract: | Let n be an even integer. We study the bifurcation of limit cycles from the periodic orbits of the n-dimensional linear center given by the differential system x˙ 1 = -x2, x˙ 2 = x1, . . . , x˙ n-1 = -xn, x˙ n = xn-1, perturbed inside a class of piecewise linear differential systems. Our main result shows that at most (4n - 6)n/2-1 limit cycles can bifurcate up to first-order expansion of the displacement function with respect to a small parameter. For proving this result we use the averaging theory in a form where the differentiability of the system is not needed. |
| Grants: | Ministerio de Ciencia e Innovación MTM2008-03437 Agència de Gestió d'Ajuts Universitaris i de Recerca 2009/SGR-410 |
| Note: | Agraïments: The two first authors are partially supported by a FAPESP-BRAZIL grant 2007/07957-8 and grant 2007/08707-5 respec- tively. |
| Rights: | Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets. |
| Language: | Anglès |
| Document: | Article ; recerca ; Versió acceptada per publicar |
| Subject: | Limit cycles ; Bifurcation ; Control systems ; Averaging method ; Piecewise linear differential systems ; Center |
| Published in: | Nonlinear Analysis : Theory, Methods and Applications, Vol. 75 (2012) , p. 143-152, ISSN 0362-546X |
Postprint 15 p, 798.6 KB |