Web of Science: 0 citations, Scopus: 0 citations, Google Scholar: citations,
Brain metabolic pattern analysis using a magnetic resonance spectra classification software in experimental stroke
Jiménez Xarrié, Elena (Institut d'Investigació Biomèdica de Sant Pau. Unitat de Malalties Vasculars Cerebrals)
Dávila Huerta, Myriam (Universitat Autònoma de Barcelona. Departament de Bioquímica i Biologia Molecular)
Candiota Silveira, Ana Paula (Institut de Biotecnologia i de Biomedicina "Vicent Villar Palasí")
Delgado-Mederos, Raquel (Institut d'Investigació Biomèdica de Sant Pau. Unitat de Malalties Vasculars Cerebrals)
Ortega-Martorell, Sandra (Liverpool John Moores University. Department of Applied Mathematics)
Julià Sapé, Ma. Margarita (Universitat Autònoma de Barcelona. Departament de Bioquímica i de Biologia Molecular)
Arús i Caraltó, Carles (Universitat Autònoma de Barcelona. Departament de Bioquímica i Biologia Molecular)
Martí-Fàbregas, Joan (Institut d'Investigació Biomèdica de Sant Pau. Unitat de Malalties Vasculars Cerebrals)

Date: 2017
Abstract: Magnetic resonance spectroscopy (MRS) provides non-invasive information about the metabolic pattern of the brain parenchyma in vivo. The SpectraClassifier software performs MRS pattern-recognition by determining the spectral features (metabolites) which can be used objectively to classify spectra. Our aim was to develop an Infarct Evolution Classifier and a Brain Regions Classifier in a rat model of focal ischemic stroke using SpectraClassifier. A total of 164 single-voxel proton spectra obtained with a 7 Tesla magnet at an echo time of 12 ms from non-infarcted parenchyma, subventricular zones and infarcted parenchyma were analyzed with SpectraClassifier (). The spectra corresponded to Sprague-Dawley rats (healthy rats, n = 7) and stroke rats at day 1 post-stroke (acute phase, n = 6 rats) and at days 7 ± 1 post-stroke (subacute phase, n = 14). In the Infarct Evolution Classifier, spectral features contributed by lactate + mobile lipids (1. 33 ppm), total creatine (3. 05 ppm) and mobile lipids (0. 85 ppm) distinguished among non-infarcted parenchyma (100% sensitivity and 100% specificity), acute phase of infarct (100% sensitivity and 95% specificity) and subacute phase of infarct (78% sensitivity and 100% specificity). In the Brain Regions Classifier, spectral features contributed by myoinositol (3. 62 ppm) and total creatine (3. 04/3. 05 ppm) distinguished among infarcted parenchyma (100% sensitivity and 98% specificity), non-infarcted parenchyma (84% sensitivity and 84% specificity) and subventricular zones (76% sensitivity and 93% specificity). SpectraClassifier identified candidate biomarkers for infarct evolution (mobile lipids accumulation) and different brain regions (myoinositol content). The online version of this article (doi:10. 1186/s12868-016-0328-x) contains supplementary material, which is available to authorized users.
Note: Ajuts: EU FEDER funds Redes Temáticas de Investigación Cooperativa Sanitaria RETICS-INVICTUS-RD12/014/0002
Note: Número d'acord de subvenció MINECO/SAF2011-23870
Note: Número d'acord de subvenció MINECO/SAF2014-52332-R
Rights: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original. Creative Commons
Language: Anglès.
Document: article ; recerca ; publishedVersion
Subject: Magnetic resonance spectroscopy ; Metabolomics ; Pattern recognition ; Stroke ; Animal model
Published in: BMC Neuroscience, Vol. 18, issue 1 (Jan. 2017) , art. 13, ISSN 1471-2202

Dades de recerca relacionades amb l'article: https://ddd.uab.cat/record/166606
PMID: 28086802
DOI: 10.1186/s12868-016-0328-x


10 p, 1.4 MB

The record appears in these collections:
Research literature > UAB research groups literature > Research Centres and Groups (scientific output) > Health sciences and biosciences > Institut d'Investigació Biomèdica Sant Pau
Articles > Research articles
Articles > Published articles

 Record created 2018-02-08, last modified 2018-11-14



   Favorit i Compartir