|
|
|||||||||||||||
|
Cerca | Lliura | Ajuda | Servei de Biblioteques | Sobre el DDD | Català English Español | |||||||||
| Pàgina inicial > Articles > Articles publicats > Canards existence in the Hindmarsh-Rose model |
| Data: | 2019 |
| Resum: | In two previous papers we have proposed a new method for proving the existence of "canard solutions" on one hand for three and four-dimensional singularly perturbed systems with only one fast variable and, on the other hand for four-dimensional singularly perturbed systems with two fast variables [J. M. Ginoux and J. Llibre, Qual. Theory Dyn. Syst. 15 (2016) 381-431; J. M. Ginoux and J. Llibre, Qual. Theory Dyn. Syst. 15 (2015) 342010]. The aim of this work is to extend this method which improves the classical ones used till now to the case of three-dimensional singularly perturbed systems with two fast variables. This method enables to state a unique generic condition for the existence of "canard solutions" for such three-dimensional singularly perturbed systems which is based on the stability of folded singularities (pseudo singular points in this case) of the normalized slow dynamics deduced from a well-known property of linear algebra. Applications of this method to a famous neuronal bursting model enables to show the existence of "canard solutions" in the Hindmarsh-Rose model. |
| Ajuts: | Ministerio de Economía y Competitividad MTM2016-77278-P Ministerio de Economía y Competitividad MTM2013-40998-P |
| Drets: | Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets. |
| Llengua: | Anglès |
| Document: | Article ; recerca ; Versió acceptada per publicar |
| Matèria: | Hindmarsh-Rose model ; Singularly perturbed dynamical systems ; Canard solutions |
| Publicat a: | Mathematical Modelling of Natural Phenomena, Vol. 14, Issue 4 (2019) , art. 409, ISSN 1760-6101 |
Postprint 16 p, 706.1 KB |
21 p, 529.6 KB |