Web of Science: 4 cites, Scopus: 4 cites, Google Scholar: cites
An inverse approach to the center-focus problem for polynomial differential system with homogenous nonlinearities
Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques)
Ramírez, Rafael Orlando (Universitat Rovira i Virgili. Departament d'Enginyeria Informàtica i Matemàtiques)
Ramírez, Valentín (Universitat de Barcelona)

 Data: 2017 Resum: We consider polynomial vector fields of the form \[ \X=(-y X_m) x (x Y_m) y, \] where X_m=X_m(x,y) and Y_m=Y_m(x,y) are homogenous polynomials of degree m. It is well--known that \X has a center at the origin if and only if \X has an analytic first integral of the form \[ H=12(x^2 y^2) _j=3^ H_j, \] where H_j=H_j(x,y) is a homogenous polynomial of degree j. The classical center-focus problem already studied by H. Poincar\'e consists in distinguishing when the origin of \X is either a center or a focus. In this paper we study the inverse center-focus problem. In particular for a given analytic function H defined in a neighborhood of the origin we want to determine the homogenous polynomials X_m and Y_m in such a way that H is a first integral of \X and consequently the origin of \X will be a center. Moreover, we study the case when \[H=12(x^2 y^2)(1 _j=1^ \Upsilon_j),\] where \Upsilon_j is a convenient homogenous polynomial of degree j for j 1. The solution of the inverse center problem for polynomial differential systems with homogenous nonlinearities, provides a new mechanism to study the center problem, which is equivalent to Liapunov's Theorem and Reeb's criterion. Nota: Agraïments: The second author was partly supported by the Spanish Ministry of Education through projects TIN2011-27076-C03-01, TIN2014-57364-C2-1-R. Nota: Número d'acord de subvenció AGAUR/2014/SGR-568 Nota: Número d'acord de subvenció EC/FP7/2012/316338 Nota: Número d'acord de subvenció EC/FP7/2012/318999 Nota: Número d'acord de subvenció MINECO/MTM2013-40998-P Nota: Número d'acord de subvenció MINECO/MTM2016-77278-P Drets: Tots els drets reservats. Llengua: Anglès Document: article ; recerca ; acceptedVersion Matèria: Analytic planar differential system ; Center-foci problem ; Darboux's first integral ; Holomorphic isochronous center ; Isochronous center ; Liapunov's constants ; Uniform isochronous center ; Weak condition for a center Publicat a: Journal of differential equations, Vol. 263 (2017) , p. 3327-3369, ISSN 1090-2732

DOI: 10.1016/j.jde.2017.04.030

 Postprint 37 p, 871.8 KB

Registre creat el 2017-11-28, darrera modificació el 2020-11-01

 #bookmark_sciencewise, #bookmark { float: left; } #bookmark_sciencewise li { padding: 2px; width: 25px} #bookmark_sciencewise ul, #bookmark ul { list-style-image: none; } @import "https://ddd.uab.cat/css/jquery.bookmark.css"; Afegeix-lo al cistell personal Anomena i desa Citation, BibTeX, MARC, MARCXML, DC, EDM #bookmark_sciencewise, #bookmark { float: left; } #bookmark_sciencewise li { padding: 2px; width: 25px} #bookmark_sciencewise ul, #bookmark ul { list-style-image: none; } @import "https://ddd.uab.cat/css/jquery.bookmark.css";