Anàlisi semàntic d'imatges en xarxes socials amb tècniques de deep learning
Reyes Martí, Marc
Gonzàlez i Sabaté, Jordi, dir. (Universitat Autònoma de Barcelona. Departament de Ciències de la Computació)
Universitat Autònoma de Barcelona. Escola d'Enginyeria

Additional title: Semantic analysis of images of social networks with deep learning techniques
Additional title: Análisis semántico de imágenes en redes sociales con técnicas de deep learning
Date: 2017-02-07
Abstract: Aquest projecte proposa un mètode per a classificar diferents imatges segons quins aliments es poden veure en elles. S'utilitzen dos conjunts d'imatges etiquetades segons quin aliment es veu en elles, un dividit en 101 classes i l'altre en 256 classes. Utilitzant aquests conjunts s'analitzen diferents tècniques d'entrenament de xarxes neurals convolucionals per a generar un model capaç de distingir quin aliment si pot visualitzar. S'analitzen diferents arquitectures de xarxes convolucionals que han obtingut bons resultats amb el dataset Imagenet, com per exemple la ResNet. El model proposat pel conjunt de dades dividit en 101 classes assoleix un 81,59% i el proposat pel conjunt de dades dividit en 256 classes assoleix un 63,21%.
Abstract: This project proposes a method for classifying different images depending on what foods we can see in the pictures. Use two sets of images tagged as what food is in them, one divided into 101 classes and other divided into 256 classes. We using these sets to analyze different techniques of training convolutional neural networks to generate a model able to distinguish which food if viewable. We analyze a differents convolutional network architectures that have obtained good results with the dataset Imagenet, one example is ResNet. The proposed model for dataset that is divided into 101 classes has obtained a 82. 07% and the proposed model for dataset that is divided into 256 classes has obtained a 63. 54%.
Abstract: Este proyecto propone un método para clasificar diferente imágenes según que alimentos podemos visualizar en elles. Se usan dos conjuntos de imagenes etiquetadas según que alimentos se pueden ver en elles, uno dividido en 101 clases i el otro en 256 clases. Usando estos conjuntos se analizan diferentes técnicas de entrenamiento de redes neuronales convolucionales para generar un modelo capaz de distinguir que alimento se puede visualitzar. Se analizan diferentes arquitecturas de redes convolucionales que han obtenido Buenos resultados usando el dataset Imagenet, por ejemplo la ResNet. El modelo propuesto para el conjunto de datos divido en 101 clases obtiene un 81,59% i el propuesto para el conjunto de datos dividido en 256 clases obtiene un 63,21%.
Rights: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial i la comunicació pública de l'obra, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original. No es permet la creació d'obres derivades. Creative Commons
Language: Català.
Studies: Enginyeria Informàtica [2502441]
Study plan: Enginyeria Informàtica [958]
Document: bachelorThesis ; Text
Subject area: Menció Computació
Subject: Aprenentatge profund ; Xarxes neurals ; Xarxes neurals convolucionals ; Reconeixement de menjar ; Mapa d'activació de classes ; Aprenentatge automàtic ; Aprendizaje profundo ; Redes neuronales ; Redes neuronales convolucionales ; Reconocimiento de comida ; Mapa de activación de clases ; Aprendizaje automático ; Deep learning ; Neural networks ; Convolutional neural networks ; Food recognition ; Class Activation Mapping ; Machine learning



12 p, 8.7 MB

The record appears in these collections:
Research literature > Bachelor's degree final project > School of Engineering

 Record created 2017-04-19, last modified 2018-06-23



   Favorit i Compartir