Web of Science: 0 cites, Scopus: 0 cites, Google Scholar: cites
Differential equations with a given set of solutions
Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques)
Ramírez, Rafael Orlando (Universitat Rovira i Virgili. Departament d'Enginyeria Informàtica i Matemàtiques)
Sadovskaia, Natalia (Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada II)

Data: 2020
Resum: The aim of this paper is to study the following inverse problem of ordinary differential equations: For a given set of analytic functions ω={z(t),…,z(t)}, with z(t)=x(t)+iy(t) and z¯(t)=x(t)−iy(t) for j=1,…,r, defined in the open interval I⊆R, we want to determine the differential equation F(t,z¯,z,z˙,z¯˙,…,z,z¯)=0,where [Formula presented] for j=1,…,n, in such a way that the given set of functions ω is a set of solutions of this differential equation.
Ajuts: Ministerio de Economía y Competitividad MTM2016-77278-P
Agència de Gestió d'Ajuts Universitaris i de Recerca 2017/SGR-1617
European Commission 777911
Drets: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, i la comunicació pública de l'obra, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original. No es permet la creació d'obres derivades. Creative Commons
Llengua: Anglès
Document: Article ; recerca ; Versió acceptada per publicar
Matèria: Planar differential system ; Inverse problem for ordinary differential equations ; Ricatti equation ; Abel equation ; First integral
Publicat a: Applied Mathematics and Computation, Vol. 365 (January 2020) , art. 124659, ISSN 0096-3003

DOI: 10.1016/j.amc.2019.124659


Postprint
25 p, 744.8 KB

El registre apareix a les col·leccions:
Documents de recerca > Documents dels grups de recerca de la UAB > Centres i grups de recerca (producció científica) > Ciències > GSD (Grup de sistemes dinàmics)
Articles > Articles de recerca
Articles > Articles publicats

 Registre creat el 2020-04-15, darrera modificació el 2022-03-05



   Favorit i Compartir