End-to-End Framework for Continuous Space-Time Super-Resolution on Remote Sensing
Gutiérrez Gómez, Cristian
Lumbreras Ruiz, Felipe, dir. (Universitat Autònoma de Barcelona. Departament de Ciències de la Computació)
Universitat Autònoma de Barcelona. Escola d'Enginyeria

Additional title: End-to-End Framework per a Super-Resolució Continua a l'Espai i el Temps a Remote Sensing
Additional title: End-to-End Framework para Super-Resolución Continúa en el Espacio y el Tiempo en Remote Sensing
Date: 2023
Abstract: In Remote Sensing, much effort has been dedicated to the Super-Resolution field to overcome physical sensors limitations, and Deep Learning has vastly surpassed Interpolation and Reconstruction based methods. Spatial and multi-spectral based methods are commonly pre-dominant in the field, and, motivated by the recent success stories of 3D spatial modeling with Implicit Neural Representation, new continuous image modeling methods are appearing. In this present work, we take advantage of already existing spatial and spectral techniques and continuous image representation with Local Implicit Image Function (LIIF) by adding the Temporal dimension into the problem, leaning towards a continuous interpolation model of space and time as a first approximation to the total modelization. Code available at https://github. com/ggcr/Super-Temporal-LIIF.
Abstract: Al Remote Sensing, s'han dedicat molts esforços al l'àrea de la Super-Resolució per superar les limitacions físiques dels sensors, i el Deep Learning ha superat àmpliament els mètodes basats en Interpolació i Reconstrucció. Mètodes espacials i multi-espectrals són predominants en aquest camp i, motivats pels casos d'èxit recents del modelatge espacial 3D amb Representació Neuronal implícita, estan apareixent nous mètodes de modelització continua aplicats en imatges. En aquest treball, aprofitem les tècniques espacials i espectrals ja existents i la representació contínua d'imatges amb Local Implicit Image Function (LIIF) afegint la dimensió Temporal al problema, resultant en un model d'interpolació contínua d'espai i temps com a una primera aproximació a la modelització total. Codi disponible a https://github. com/ggcr/Super-Temporal-LIIF.
Abstract: En Remote Sensing, se han dedicado muchos esfuerzos al área de la Super-Resolución para superar las limitaciones físicas de los sensores, y el Deep Learning ha superado ampliamente los métodos basados en Interpolación y Reconstrucción. Métodos espaciales y multi-espectrales son predominantes en este campo y, motivados por los casos de éxito recientes del modelado espacial 3D con Representación Neuronal implícita, están apareciendo nuevos métodos de modelización continua aplicados en imágenes. En este trabajo, aprovechamos las técnicas espaciales y espectrales ya existentes y la representación continua de imágenes con Local Implicit Image Function (LIIF) añadiendo la dimensión Temporal al problema, resultando en un modelo de interpolación continua de espacio y tiempo como una primera aproximación a la modelización total. Código disponible en https://github. com/ggcr/Super-Temporal-LIIF.
Rights: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, i la comunicació pública de l'obra, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original. No es permet la creació d'obres derivades. Creative Commons
Language: Anglès
Studies: Enginyeria Informàtica [2502441]
Study plan: Enginyeria Informàtica [958]
Document: Treball final de grau ; Text
Subject area: Menció Computació
Subject: Remote Sensing ; Super-Resolució Contínua Espacial-Temporal ; Interpolació Temporal ; Representació Neuronal Implícita ; Local Implicit Image Function (LIIF) ; Super-Resolución Continua Espacial-Temporal ; Interpolación Temporal ; Representación Neuronal Implícita ; Space-Time Continuous Super-Resolution ; Temporal Interpolation ; Implicit Neural Representation



12 p, 24.4 MB

The record appears in these collections:
Research literature > Bachelor's degree final project > School of Engineering. TFG

 Record created 2023-07-18, last modified 2025-07-20



   Favorit i Compartir