GSD (Dynamical systems)

Dynamical systems is, and always has been, one of the main lines of research in Mathematics. It lies in the interest of all human civilizations to understand important questions such as the movement of the planets, the evolution of populations, or the discovery of chaotic dynamics in robust deterministic systems, which is why dynamical systems has become a major goal of study. After many years of evolution, the area of dynamical systems has undergone various transformations and developed branches to provide answers to questions of diverse nature.

The interests of the Dynamical Systems Group of UAB (GSD-UAB) can be described by stating our main research lines: Celestial Mechanics, Complex Dynamics, Discrete Real Dynamical Systems and Qualitative Theory of Differential Equations.

The members of our group work mainly in Catalonian universities (UAB, UB, UdG, UPC, URV, UVIC), although some of our researchers work in other universities in Spain and abroad. GSD-UAB collaborates with various national and international research groups.

Web page: http://www.gsd.uab.cat

Usage statistics Most popular
Latest additions:
2025-08-28
10:49
16 p, 401.5 KB Monotonous Period Function for Equivariant Differential Equations with Homogeneous Nonlinearities / Gasull, Armengol (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Rojas, David (Universitat Autònoma de Barcelona. Departament de Matemàtiques)
We prove that the period function of the center at the origin of the Zk-equivariant differential equation z˙= iz + a(zz¯)nzk + 1, a ≠ 0, is monotonous decreasing for all n and k positive integers, solving a conjecture about them. [...]
2025 - 10.1007/s00009-025-02879-2
Mediterranean journal of mathematics, Vol. 22, Issue 5 (August 2025) , art. 112  
2025-07-28
14:24
Quadratic vector fields in class I / Artés Ferragud, Joan Carles (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Chen, Hebai (Central South University. School of Mathematics and Statistics (China)) ; Ferrer, Lluc Manel (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Jia, Man (Central South University. School of Mathematics and Statistics (China))
In [Ye et al. , Theory of Limit Cycles, 1986], quadratic systems are classified into three different normal forms (I, II and III) with increasing number of parameters. The simplest family is I and even several subfamilies of it have been studied, and some global attempts have been done, up to this paper, the full study was still undone. [...]
2025 - 10.1080/14689367.2024.2436223
Dynamical Systems, Vol. 40, Issue 2 (2025) , p. 191-222  
2025-07-28
14:24
Polynomial differential systems with invariant algebraic curves of arbitrary degree formed by Legendre polynomials / Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Valls, Clàudia 1973- (Universidade de Lisboa. Instituto Superior Técnico. Departamento de Matemática)
In 1891 Poincaré asked: Given m ≥ 2, is there a positive integer M(m) such that if a polynomial differential system of degree m has an invariant algebraic curve of degree ≥ M(m), then it has a rational first integral? Brunella and Mendes repeated the same open question in 2000, and Lins-Neto in 2002. [...]
2025 - 10.1016/j.jpaa.2025.108001
Journal of Pure and Applied Algebra, Vol. 229, Issue 8 (August 2025) , art. 108001  
2025-07-28
14:24
On the Limit Cycles Bifurcating from the Periodic Orbits of a Hamiltonian System / Anacona, Gerardo H. (Universidade Federal de Goiás. Instituto de Matemática e Estatística) ; Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Freitas, Bruno (Universidade Federal de Goiás. Instituto de Matemática e Estatística)
This paper concerns the weak 16th Hilbert problem and considers the Hamiltonian center a: = -y2n-1, a: = x2n-1, and we perturb it by all polynomials of degree 2n-1 for n = 2, 3, 4, 5, 6, 7, 8. We prove that the maximum number of limit cycles that can bifurcate from the periodic orbits of this center for n = 2, 3, 4, 5, 6, 7, 8, under the mentioned perturbations and using the averaging theory of first order, is 1, 4, 3, 2, 5, 6, 7, respectively.
2025 - 10.1142/S0218127425500403
International journal of bifurcation and chaos in applied sciences and engineering, Vol. 35, Issue 4 (March 2025) , art. 2550040  
2025-07-28
14:24
5 p, 617.4 KB Zero-Hopf bifurcation of a 5D hyperchaotic quadratic polynomial differential systems / Diab, Zouhair (Echahid Cheikh Larbi Tebessi University. Department of Mathematics and Computer Science) ; Guirao, Juan Luis Garcia (Universidad Politécnica de Cartagena. Departamento de Matemática Aplicada y Estadística) ; Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques)
A zero-Hopf equilibrium of a 5-dimensional autonomous differential system is an equilibrium point for which the Jacobian matrix of the system evaluated at that equilibrium has three zero eigenvalues and a pair of purely imaginary eigenvalues. [...]
2025 - 10.1016/j.matcom.2025.06.021
Mathematics and computers in simulation, Vol. 238 (December 2025) , p. 383-387  
2025-07-28
14:24
The Uniform Isochronous Centers with Homogeneous Nonlinearities of Degree 5 / Dong, Guangfeng (Jinan University. Department of Mathematics) ; Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques)
The interest in studying the uniform isochronous centers goes back to C. Huygens in the XVII century. Since then, many papers have been published on this subject. In particular, the phase portraits of the polynomial uniform isochronous center up to degree four have been classified. [...]
2025 - 10.1007/s10883-025-09734-3
Journal of Dynamical and Control Systems, Vol. 31, Issue 2 (June 2025) , art. 11  
2025-07-28
14:24
On Nested Central Configurations of the 3n Body Problem / Barrabés Vera, Esther (Universitat de Girona) ; Cors Iglesias, Josep Maria (Universitat Politècnica de Catalunya) ; Fernandes, Antonio Carlos (Universidade Federal de Itajubá. Instituto de Matemática e Computação) ; Vidal, Claudio (Universidad del Bío-Bío. Departamento de Matemática)
In this work, we consider the existence of (3, n)-crowns in the classical Newtonian 3n-body problem, which are central configurations formed by three groups of n bodies with the same mass within each group, located at the vertices of three concentric regular polygons. [...]
2025 - 10.1007/s00332-025-10162-7
Journal of Nonlinear Science, Vol. 35, Issue 4 (August 2025) , art. 67  
2025-07-09
15:14
13 p, 321.0 KB On the Dynamics of a Modified van der Pol-Duffing Oscillator / Cespedes, Oscar A. R. (Universidad Distrital Francisco José de Caldas. Departamento de Matemática) ; Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques)
The 3-dimensional modified van der Pol-Duffing oscillator has been studied by several authors. We complete its study, first characterizing its zero-Hopf equilibria and then its zero-Hopf bifurcations-i. [...]
2025 - 10.3390/axioms14040321
Axioms, Vol. 14, Issue 4 (April 2025) , art. 321  
2025-07-09
12:45
67 p, 999.8 KB Parabolic Saddles and Newhouse Domains in Celestial Mechanics / Garrido, Miguel (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Martín, Pau (Universitat Politècnica de Catalunya. Departament de Matemàtiques) ; Paradela, Jaime (University of Maryland. Department of Mathematics)
In McGehee (J Differ Equ 14:70-88, 1973) McGehee introduced a compactification of the phase space of the restricted 3-body problem by gluing a manifold of periodic orbits "at infinity". Although from the dynamical point of view these periodic orbits are parabolic (the linearization of the Poincaré map is the identity matrix), one of them, denoted here by O, possesses stable and unstable manifolds which, moreover, separate the regions of bounded and unbounded motion. [...]
2025 - 10.1007/s00220-025-05299-1
Communications in mathematical physics, Vol. 406 (June 2025) , art. 173  
2025-07-03
10:03
12 p, 427.0 KB Phase portraits of cubic polynomial Kolmogorov differential systems having a rational first integral of degree three / Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Tian, Renhao (Sun Yat-Sen University. School of Mathematics)
We classify all global phase portraits in the Poincaré disc of the cubic polynomial Kolmogorov differential systems having a well-defined rational first integral of degree three at the origin. For such differential systems there are exactly two different global phase portraits up to a reversal of the sense of their orbits.
2025 - 10.1063/5.0220041
Journal of Mathematical Physics, Vol. 66, Issue 5 (May 2025) , art. 52702